A Metabolic Profiling Strategy for the Dissection of Plant Defense against Fungal Pathogens
نویسندگان
چکیده
Here we present a metabolic profiling strategy employing direct infusion Orbitrap mass spectrometry (MS) and gas chromatography-mass spectrometry (GC/MS) for the monitoring of soybean's (Glycine max L.) global metabolism regulation in response to Rhizoctonia solani infection in a time-course. Key elements in the approach are the construction of a comprehensive metabolite library for soybean, which accelerates the steps of metabolite identification and biological interpretation of results, and bioinformatics tools for the visualization and analysis of its metabolome. The study of metabolic networks revealed that infection results in the mobilization of carbohydrates, disturbance of the amino acid pool, and activation of isoflavonoid, α-linolenate, and phenylpropanoid biosynthetic pathways of the plant. Components of these pathways include phytoalexins, coumarins, flavonoids, signaling molecules, and hormones, many of which exhibit antioxidant properties and bioactivity helping the plant to counterattack the pathogen's invasion. Unraveling the biochemical mechanism operating during soybean-Rhizoctonia interaction, in addition to its significance towards the understanding of the plant's metabolism regulation under biotic stress, provides valuable insights with potential for applications in biotechnology, crop breeding, and agrochemical and food industries.
منابع مشابه
Induced Acidic chitinase Expression and Scab-Resistant in Wheat Under Field Condition
Fusarium head blight (FHB) caused by Fusarium graminearum is responsible for billions of dollars in agriculture losses. The goal of the present study was evaluation the expression of acidic chitinase, one of PR proteins, in wheat defense response against different FHB induced treatments in 'Falat' as a highly susceptible and 'Sumai3' as a tolerant cultivar. These treatments contained fungi extr...
متن کاملThe expression of a bean PGIP in transgenic wheat confers increased resistance to the fungal pathogen Bipolaris sorokiniana.
A possible strategy to control plant pathogens is the improvement of natural plant defense mechanisms against the tools that pathogens commonly use to penetrate and colonize the host tissue. One of these mechanisms is represented by the host plant's ability to inhibit the pathogen's capacity to degrade plant cell wall polysaccharides. Polygalacturonase-inhibiting proteins (PGIP) are plant defen...
متن کاملFungal manipulation of hormone-regulated plant defense
Fungi have adapted to diverse habitats and ecological niches, including the complex plant systems. Success of the pathogenic or symbiotic fungi in colonizing the plant tissue depends on their ability to modulate the host defense signaling [1]. Strategies that impart such abilities in fungi include the use of effector proteins that directly disrupt phytohormone-based defense signaling pathways a...
متن کاملExpression and antimicrobial activity analysis of dermaseptin B1 recombinant peptides in tobacco transgenic plants
Recently, new molecular breeding and genetic engineering approaches have emerged to overcome the limitations of conventional breeding methods in generating disease-resistance transgenic plants. The use of antimicrobial peptides (AMPs) to produce transgenic plants resistant to a wide range of plant pathogens has achieved great success. Among huge number of AMPs, Dermaseptin B1 (DrsB1), an antimi...
متن کاملNonhost resistance of barley to different fungal pathogens is associated with largely distinct, quantitative transcriptional responses.
Nonhost resistance protects plants against attack by the vast majority of potential pathogens, including phytopathogenic fungi. Despite its high biological importance, the molecular architecture of nonhost resistance has remained largely unexplored. Here, we describe the transcriptional responses of one particular genotype of barley (Hordeum vulgare subsp. vulgare 'Ingrid') to three different p...
متن کامل